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ABSTRACT

The feasibility of applying the principles of matched

field processing to ocean acoustic tomography were studied

under various conditions of ambient noise. Several likeli-

hood estimators were examined (e.g., Bucker, Bartlett,

Maximum Likelihood, etc.). Simulations were initially

conducted for the simple case wherein only one parameter of

the medium was unknown (e.g., SOFAR axis depth, surface

sound speed, position of a single acoustic front). The

method was then applied to the more realistic problem of

locating the boundaries of an eddy in the ocean. For

moderate signal-to-noise ratios, all the estimators were

shown to be able to solve the problem, albeit with different

efficiencies. For low signal-to-noise ratios, the MLM

scheme proved to be the most reliable especially when a

highly correlated amabient noise was present. In all cases,

computer simulations illustrated that mismatching may occur

when the parameterization of the medium is poorly

approximated. Mismatching leads to a decrease in the

efficiency of the estimators but it may be still possible to

correctly estimate the environmental characteristics.
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I. INTRODUCTION

As sound waves propagate through the ocean, the complex

acoustic pressure field which is generated by the source

depends mainly on the path followed by the acoustic rays and

the sound speed along this particular path. Due to this

close relationship between the sound speed field and the

acoustic pressure field, an attempt may be made to estimate

the range-dependent sound speed profile (SSP) between a

fixed source and an array of receivers. The characteriza-

tion of the SSP from acoustical measurements generally

involves inverse techniques in order to infer the acoustic

rroper-ties of the medium from the pressure field measured at

the receivers.

Due to the complexity of the ocean the inverse problem

is most often non-linear and underdetermined. Classicial

acoustic tomography solves this problem by linearization.

The tomographic method is able to estimate the perturbations

of the sound speed field by comparing the measured travel

times of particular rays with those computed numerically

from a reference sound speed field and a raytrace or a

normal mode algorithm (Munk and Wunsch, 1978). The

procedure provides maps of the perturbations in the sound

speed field and indicates how different the actual field is

from the one used as a reference. If a large enough number



of ray paths are used in the computations, the spatial

resolution in the map of the sound speed field may be better

than the one obtained from discrete CTD measurements (Howe,

1986).

Matched field processing is a different type of inverse

method which was first proposed as a method to locate an

acoustic source in the ocean. The principle is to compare

the measured complex acoustic pressures at a vertical array

with those computed from an acoustic model using various

positions of the target source (Bucker, 1976). The

procedure generates a function which is a measure of the

likelihood between the actual acoustic pressure field

created by the source (unknown position) and a replica

pressure field generated from an estimate of the source

location.

This study is an attempt to use matched field processing

as an alternate tool to solve the inverse problem in

acoustic tomography. Given the position of the source and

the receivers, matched field processing is employed to

compare the true complex acoustic pressures at the receiving

array with the ones computed from an acoustic propagation

model and various sound speed fields. Computer simulations

are used to demonstrate the performance of various

estimators under different signal-to-noise ratios and noise

correlation matrix structures.
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Chapter II provides a theoretical presentation of the

likelihood estimators which are used in this study. It also

illustrates how the noise is modeled and added to the

simulated data. The simulations are shown in Chapter III

for various conditions of noise. The first simulations deal

with the simple case where only one parameter of the medium

is unknown (e.g., SOFAR axis depth, surface sound speed,

single frontal boundary) and where the noise is absent. The

next cases are applied to the localization of an eddy in a

noisy medium. Situations of both spatially uncorrelated

noise and correlated noise were examined. Comparison of the

estimators is provided in Chapter IV; the spreading of each

likelihood function about the true value is examined in more

detail under several conditions of noise power and noise

correlation. Also discussed is the problem of incomplete or

poor knowledge of the other environmental parameters, e.g.,

incorrectly specifying the bottom absorption property, and

how this ray introduce inconsistency in the procedure anl

lead to a decrease in the efficiency of the likelihood

functions.

3



II. ACOUSTIC TOMOGRAPHY AND MATCHED FIELDS

A. PRINCIPLES OF MATCHED FIELD PROCESSING

Classical beamforming for plane waves is obtained by

measuring the maximum likelihood between the actual value of

the complex signal at each hydrophone and the values

computed from an expected bearing (Ziomek, 1985).

In a similar fashion, the distance to a target in the

near field can be estimated by comparing the actual values

with those computed for different distances. The range is

assumed to be correct when both sets of values correspond to

the same wave front curvature (Ziomek, 1985).

Matched field processing has been used traditionally to

find the location of an acoustic source in a shallow water

environment. The general principle is to store the values

of the received signal (amplitudes and phase) at each

element of the array and then compare them with theoretical

values computed for different possible positions of the

target source. The true location of the emitter is

determined when both fields match (Bucker, 1976; Baggeroer,

Kuperman and Schmidt, 1988).

Different criteria may be used to measure the likelihood

or degree of matching. Each one generates a different

function which is generally well adapted for a particular

4



type of noise. Matched field detection is consistent when

the medium is completely determined.

Matched field tomography deals with the inverse problem.

Given that the source location is known, the purpose of the

procedure is to estimate the medium characteristics,

particularly the r nge-dependent sound speed profile. In

this case, the replica or estimated fields are built from

many sound speed profiles and one tries to match them with

the measured one.

B. THEORY IN NOISE-FREE CONDITIONS

1. Bucker Methcd

According to Bucker (1976), the following "detection

factor" may be used as a measure of the difference between

the exact and the replica fields:

BUCK = j=l k=i$j Jk KP(2.1)

where terms are defined as follows:

KR = spatial autocorrelation matrix of one replica
field,

KS = spatial autocorrelation matrix of the actual

field,

NR = number of hydrophones in the array,

F = scaling factor to insure a result between
0 and 1,

5



<> = time average used to remove the component due

to the noise,

= complex conjugate

The matrices KS and KR are defined by

KSjk = jPk- (2.2)

KRjk = P'jP'k" (2.3)

where pj and p'j denote, respectively, the complex envelope

of the acoustic pressure and the replica pressure at

hydrophone j; similarly for hydrophone k. As demonstrated

by Bucker (1976), it is convenient to define the correlaticn

matrices from the complex envelopes of the signal because

the rapidly-varying time component is removed from the

computations. These complex envelopes are easily obtained

by processing the incoming signal through a classical

quadrature demodulator (multiplication by a sine wave

followed by a low-pass filter).

In the absence of noise, the time average is

unnecessary (KS is time independent) and the normalized

detection factor becomes:

NR NR

L Kk- KR
j=l k=lxj K k 2.4jk

BUCK 1/2 N 1/2 (2.4)
j~ =~ KR j k " KR j k )  (=1 ?, ,jKS jk KS jk')

j=-l k=13fk jk k=I~j

6



This factor is similar to the classical correlation

coefficient of two random variables. The expression given

above does not use the diagonal elements of the matrices and

can be interpreted as the output of a regular beamformer.

Its value is one in the case of complete equality of the

fields (KR = KS). We note also that the Bucker detection

factor is one when the matrices KR and KS are proportional,

as a consequence of the Schwarz inequality.

2. Heitmever Method

Heitmeyer (1984) defined another detection factor

which he called the "source location ambiguity function."

Its value is given by the following expression:

2
HEIT n=l nn

HEIT (2.5)
2

-1 -.
n=1

and may be rewritten in terms of phases and magnitudes:

ppnID n Pn1 j :-n )

HEIT = NT (2.6)
h P , -P n2

nl

It can easily be seen that the function is

unnormalized. From the inequality:

7



-R 2 NR 2 ,2' (pn pn ') n p n n1 ipn

HEIT i n=l nR (2.7)NRNR pn

" ) 2 - 2

II

NR I n N l

an upper limit is found:

1 15P, 2

HEIT < 1 P (2.8)

The ambiguity function is always bounded by a

quantity that may be considered as the average power

detected at each hydrophone.

When the replica and the measured fields match

exactly, the expression reduces to the following:

PIn = (2.9)

which yields

NR 22- 2n-pn, N?

HEIT = _ 2 = 2 p (2.10)
N? ~ -2nNR Pn
n

n-- 1

The inequality demonstrated previously becomes an identity

when the actual and replica fields are identical.

8



In order to obtain a normalized ambiguity function,

we divide Equation (2.6) by this upper limit.

; 2

p pn' exp(jC.n-zn')),

HEIT NR 2 7 2 (2.11)

Pn LPn
n-= n1l

3. Relation between Bucker and Heitmever Methods

Using the definition of the spatial autocorrelation

matrix, Equation (2.4) may be written:

fl-, . Q,; I L

BUCK = j=l k=i#j7j (2.12)
1/2 l/2

j=l k=] ,j " =

If we allow the subscripts j and k to be equal, this

expression becomes:

'- " -tn

2k RE' Pk

1 11/2< .a 4ki1/2

j=l k=l j  j=l kl-ijp-k12/

hence,

9



NR NI.

BUCK 'R NR (2.14)
, 2 2PPk

j3=1 k=l

or, by changing the subscripts,

N R 2
i nPn ' " ,

BUCK= n-i (2.15)

P ,2 , 2
n=ln n Pn

which is exactly the normalized ambiguity function defined

by Heitmeyer in Equation (2.11).

More generally, by developing the expressions of

both functions, we can derive the following relation between

the Bucker and Heitmeyer definitions:

,I -R N p

BUCK = HEIT i NR l- (2.16)

2 Rp p
i=l 

I  -i

Tnis reiaon is not a simple proportionality ratio

because it changes with the replica fields R'j-

4. Center of Gravity Method

Other likelihood estimations can be developed using

any function which has a maximum in case of perfect

10



matching. The center of gravity method is a procedure which

solves the problem from a more mathematical viewpoint.

In the complex plane, vectors P and P' define two

sets of NR points, where NR represents the number of

receivers of the array. The components of the points are

the real and imaginary parts of the complex acoustic

pressures:

set P is composed of points (Pi cos :i,pi sin i)

set P' is composed of points (P'i cos 'iP'i sin 'i)

In order to compute a detection factor, we calculate

the euclidean distance between the centers of gravity G and

G' of both sets (Figure 2.1). This distance is inversely

related to the likelihood of the fields.

With a sum of weights of 1, the points G and G' are

given by their coordinates:

Xg - C n s (2.17)
g R n=l n

Y 1 o sin (2.18)
Yg~ n=ln n

and

X'g _ 1 P' cosn (2.19)g n-1 n n

, 1 p (2.20)

g n~ln n

1i



The distance becomes:

D = ((Xg-Xg' )2 + (ygyg, )2)1/2 (2.21)

or

NR . N 2 2 1/2
PnCos n pn 'cs'n ) +( Psinn-pn sin n))
n nn n nn1

D- NR (2.22)

We then normalize the quantity in order to obtain

unity for complete matching.

DN = 1 - D/Dmax (2.23)

where Dmax is the largest unnormalized distance among all

the replicas.

DN is only an estimation of likelihood. Although it

is possible for two different sets of points to have the

same center of gravity, if they are concentric, this does

not occur in the simulations and the method keeps its

consistency. We will see later that this distance function

may lead to high secondary lobes and thus is not always

reliable.

C. THEORY IN PRESENCE OF NOISE

Although it is possible to use the former expressions

when noise is present which contaminates the signal, the

12



following two functions are more specifically suited for use

in the presence of noise.

Johnson (1982) previously demonstrated the equivalence

between the problem of bearing determination and the

estimation of the spectrum of a signal. Due to this

similarity, all modern spectral estimation algorithms apply

equally to beamforming and matched field processing.

Although many functions may be used, as for example,

MUSIC (Schmidt, 1981) or linear predictor (Johnson, 1982),

we will particularly emphasize the Bartlett and Maximum

Likelihood parameters which are two powerful estimators in

target location problems. These estimators are especially

useful in noisy conditions, because Baggeroer and his

colleagues (1988) showed that they reduce to the Bucker or

Heitmeyer structures when the noise is absent.

1. Bartlett Method

This method comes directly from spectral estimation

theory. Baggeroer, Kuperman and Schmidt (1988) demonstrated

that the power output of a Bartlett beamformer could be

written in the following quadratic form:

BART = W" KT W (2.24)

where W represents the normalized velocity potential vector

of the replica field and KT is the total spatial correlation

matrix of the signal embedded in noise.

13



Due to the proportionality between the velocity

potential and the pressure field, the equivalent expression

will be used:

BART = (P'/IP'I)" KT (P'/IP'I) (2.25)

where P' is the complex acoustic pressure vector of the

replica at the array. Under the condition of perfect

matching and no noise,

N'R 2 2
BART 2 P (2.26)

i=l

which is the summation of all signal powers among the

hydrophones.

In order to normalize the function, we will divide

the estimator by its largest value. For comparison between

the different methods, we will focus on the width of the

main lobe rather than its absolute value.

If pi and ni denote, respectively, the signal and

the noise pressure at hydrophone i, the spatial correlation

matrix has the value:

KTij = E((Ri+ni)(pj+nj)") (2.27)

where E( ) denotes the expectation operation.

14



When the signal and the noise are uncorrelated, the

matrix reduces to the simple sum of signal and noise

matrices:

KTij = E(ij') + E(ninj') (2.28)

KTij = KSij + KNij (2.29)

These matrices are hermitian and at least

semidefinite.

2. Maximum Likelihood Method

In spectral estimaticn, the Maximum Likelihood

method, also called Capon's method or the minimum variance

method, is used to compte the pcver spectral density of a

random process (Kay, 1988). Its expression is given by:

pMv(f) = (eH Rxx-1 e)- 1  (2.30)

where:

f = frequency,

Rxx = time correlation matrix of the process,

e = vector whose ith component is eJ2 - f

H = transposition of the conjugate matrix.

In a similar way the output of a Maximum Likelihood

beamformer is defined:

15



MLM = (W" KT -1 W) -1  (2.31)

where W and KT have previously been defined.

Following the procedure of Equation (2.25), Equation

(2.31) is modified:

MLM = ((P''/IP'I) KT -1 (P'/IP'I)) - I  (2.32)

In the absence of noise, KT reduces to the spatial

autocorrelation of signal only, KS (Equ, ..29)). As

can be seen when the array is composed of two hydrophones,

the matrix is generally singular and has no inverse. The

calculation is made possible by adding a small amount of

noise to the diagonal. As with the Bartlett estimator, the

Maximum Likelihood factor will be divided by its largest

value for normalization.
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III. SIMULATION OF ACOUSTIC TOMOGRAPHY

Matched field processing has the same form as classical

beamforming. However, instead of comparing the actual field

vector with a plane wave replica vector, we will try to

match the actual vector with a vector computed from an

acoustic propagation model. Measured data will also be

simulated with the same code, then embedded or not in noise

depending on the scenario under investigation.

A. PROCEDURE

1. Description of the Simulation

The receiver is modeled as a vertical array and is

assumed to be composed of 20 hydrophones evenly distributed

between 550 m and 1500 m. The source is located 100 km from

the receiver at a depth of 1000 m. It emits a pure sine

wave (tonal) centered at 100 Hz. Due to the inherent

limitation of vertical angles in the parabolic approximation

(Ziomek, 1985), the transmitter was selected to have a

beamwidth of 400. The bottom is 5000 m deep and is assumed

to be flat and fully absorbing. This choice was made to

speed up the calculations and is not a restrictive

assumption. It assumes all the energy propagates by water-

borne paths.
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2. Acoustic PropaQation Model

Several models could have been used to simulate the

acoustic fields, for example, normal mode theory or the

parabolic equation (PE). The PE model was used because it

is more suitable for a deep water simulation; for example,

an ocean bottom of 5000 m allows almost 670 propagating

modes at 100 Hz and would have been computationally

intensive using normal mode theory.

The classical PE approximation with split-step

Fourier transform (Coppens, 1982) was available in the

Environmental Acoustic Research Group package of models

resident at NPS. The source code was slightly modified to

save the complex acoustic pressures at the hydrophones in a

file. The measured and the replica complex pressure fields

were then stored in order to run the simulation programs.

3. Simulation of Noise

Noise was added to the measured data in order to

produce a realistic problem and to study the behavior of the

estimators in different environments. Following the

procedure described by Porter, Dicus and Fizell (1987),

noise was introduced by the mean of its spatial correlation

matrix. This procedure is better than just altering the

data with random noise because the probability density

function of the noise is difficult to estimate. Moreover,

all the estimators considered were written in terms of

correlation matrices.
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Ambient noise falls in two categories:

- uncorrelated noise. Its correlation matrix is
proportional to the identity matrix and the
proportionality factor is an indicator of the noise
power.

- correlated noise. In this case the matrix has non zero
terms outside the diagonal, but is nevertheless an
hermitian matrix.

Several attempts to measure the coherence of ambient

noise in the ocean have been conducted during the past

years. One of them was made from the Trident Vertical Array

and is described by Urick (1984). Figure 3.1 depicts the

results of this study and has been used to generate a model

of the noise correlation matrix.

The matrix was modeled in the following way:

KNij = -2 e-1 1i-i (3.1)

where :2 depends on the noise power and is a factor which

indicates how fast the coherence falls off outside the

diagonal. The larger : is, the more uncorrelated the noise

is, i.e., its spatial correlation scale becomes shorter.

Due to the spacing between the receivers in the

array and the frequency (100 Hz) used in the simulation,

Figure 3.1 shows that ' = 1.7 is consistent with the

observed ambient noise correlation.

Although the spatial correlation matrix of the

noise, KN, is generally a complex hermitian matrix, the

analytic modeling shown in Equation (3.1) describes a real
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symmetric matrix. As explained by Cox (1973), this

approximation is valid in the special case of zero time

delay, i.e., when it is assumed that the noise is in phase

among all the hydrophones of the vertical array. This

assumption is relatively consistent for low frequency noise.

Below 150 Hz the noise is principally due to distant

shipping and arrives mainly from the horizontal.

B. ONE DIMENSIONAL PROBLEM (NOISE-FREE CONDITIONS)

In the following simulation, the shape of the sound

speed profile is the only unknown. If the profile is

digitized in 1 m intervals, then for a water depth of 5000

m, one would have to determine 5000 values to match the

complete sound speed profile. Such a procedure would lead

to an unmanageable number of computations, especially if one

tries to match a large number of replica fields. However,

as we are only interested in demonstrating the feasibility

of the procedure, we will begin by studying the simple cases

where only one or two points of the sound speed profile are

unknown.

1. Determination of a SOFAR Axis Depth

We initially start with a bi-gradient sound speed

profile having a sound speed minimum at 1000 m (Figure 3.2).

Two replica profiles are considered wherein the SOFAR axis

depth is altered by +/- 200 m (step 10 m). Note that

because the surface and bottom sound speeds are unchanged,
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the change in axial depth results in a change in the

gradients of both the upper and lower segments of the SSP.

Three estimation techniques, the Bucker, Heitmeyer,

and center of gravity methods are utilized to determine the

true depth of the sound speed minimum. These estimators are

computed from Equations (2.4), (2.11) and (2.23). The

estimated depth of the SOFAR axis is found when an estimator

shows a peak with a detection factor of 1. The results are

shown in Figures 3.3, 3.4 and 3.5; each estimator

demonstrates a different behavior.

The Bucker detection factor and the Heitmeyer

ambiguity function both indicate a maximum at the true

location of 1000 m. However a strong side lobe, centered at

1040 m, indicates these two detection factors are not robust

enough to provide an unambiguous selection of the SOFAR axis

depth. In addition, strong secondary side lobes are also

present.

The center of gravity method (Figure 3.5) proves to

be a better estimator for this situation. The main lobe is

much narrower and no other lobes exist. For a noise-free

ocean, this is the best estimator among the three to solve

this particular problem.

2. Determination of Surface Sound Speed

In order to mimic typical seasonal or spatial

changes in the SSP, the surface sound speed was permitted to

fluctuate by +/- 5 m/s about a mean value (step 1 m/s). For
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this situation the SOFAR axial depth was fixed at 1000 m.

Hence, only the upper gradient changes as seen in Figure

3.6. We seek an estimator that will match the true surface

sound speed (solid line in Figure 3.6). Using the same

three estimation techniques as above, the results are shown

in Figures 3.7, 3.8 and 3.9. For this situation, we observe

a nearly identical behavior of the Bucker and the Heitmeyer

functions, both of which have moderate side lobes at about

0.7. As before, the center of gravity estimator remains the

best without any ambiguity due to the presence of secondary

lobes.

3. Determination of an Acoustic Frontal Boundary

To model the presence of an acoustic front two

different sound speed profiles are introduced, one 50 km

from the other. The parabolic equation model was utilized

in this range-dependent problem with the position of the

front (i.e., the range at which the second SSP is

encountered) allowed to vary by +/- 20 km about the true

position (step 1 km). Figure 3.10 provides an illustration

of the SSP setup. The Bucker and the Heitmeyer methods

correctly solve this problem with relatively narrow main

lobes, as shown in Figures 3.11 and 3.12. However, the

center of gravity method does not perform as well (Figure

3.13). Although it is able to locate the correct value,

significant sidelobes are present which could lead to an

ambiguity if too small a detection threshold were chosen.
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This last procedure is obviously not suitable for these

conditions.

4. Comments on the Estimators

In order to completely appreciate the consistency of

each of the previous estimators for the case where only one

factor is unknown, it is important to study their response

to a variety of configurations.

a. Influence of the Number of Hydrophones

In the problem of determining the depth of the

SOFAR axis, the array was composed of 20 hydrophones. It is

possible to run the same simulation by using only a fraction

of the receivers. Plots of the Bucker estimator for four

different numbers of hydrophones are shown in Figure 3.14.

Although the difference is small when the number of

hydrophones is reduced from 20 to five, the output of an

array composed only of two receivers changes drastically.

When the number of hydrophones is this small, the side lobes

may have an amplitude of the same order as the main lobe, a

situation which leads to full ambiguity. The number of

hydrophones is thus an important parameter which must always

be more than some minimum value. This value is

unfortunately dependent upon the actual problem and the

depth of the array relative to the axial depth. Receivers

which do not intercept much of the acoustic energy can be

easily omitted but those which contain significant amplitude

and phase information should be retained.
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b. Influence of the Frequency

Typically as a result of beamforming, the main

lobe becomes narrower as the frequency of the array

increases. The same phenomenon can be observed in Figure

3.15, wherein the width of the estimator peak is also a

function of the frequency. However, a trade-off exists

between the desired resolution (width of the detection peak)

and the computation time of the PE model which increases

rapidly with frequency. Also if higher frequencies (kilo-

Hertz range) were used, the signal would be limited by

absorption which would result in lower signal-to-noise

ratios.

c. ImrDrlance of Array Position

The depth of the array is of minimal importance

when working in shallow water because the entire water

column is nearly insonified. Such is not the case in deep

water where shadow zones exist with relatively low signal

levels. Based on the depth of the source, a first guess of

the depth to position the array would be to place it where

the signal may be expected to occur with a high level, for

example, in the vicinity of the SOFAR axis or near a

convergence zone. The choice will obviously be dependent on

the profile shape.
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C. TWO PARAMETER PROBLEM (NOISY CONDITIONS)

1. Localization of an Eddy

The previous section has shown that the estimators

are generally able to find the correct value in the case of

a simple unknown and a noise-free medium. The same kind of

simulation may be run when two parameters are to be

determined. To test the ability of the various estimators

to deal with a two dimensional problem, we will examine

their ability to locate an eddy assumed to be present

between a source and a receiving array. The sound speed

profiles inside and outside the eddy are known. Thus the

only unknowns are the borders of this perturbation of the

sound field. An eddy 20 km in diameter is positioned 40 km

to 60 km from the source. The replica fields are computed

by scanning the limits from 35 km and 45 km for the border

closest to the source, and from 55 km to 65 km for the

farther boundary. Replications at 1 km interval were made.

We will thus try to match the simulated measured data with

121 replica fields. Figure 3.16 presents the true location

of the eddy in this simulation.

Figure 3.17 shows the disposition of source and

array with regard to the energy field for the true location

of the eddy. The array lies on the SOFAR axis, almost 30 km

beyond a convergence zone. From this plot, we can expect a

high level of signal from the channel propagation and large
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differences in phase due to multipath propagation (RR

acoustic rays).

Before processing, the measured data are imbedded in

noise. This noise is introduced by the spatial autocorrela-

tion matrix described earlier. The principal assumption of

this simulation is that all correlation matrices are

completely known. For an actual situation, this may not be

true but it is still possible to estimate the total matrix

of noise from the set of measured data.

Because of its close similarity to the Bucker

detection factor, the Heitmeyer function will be omitted

from further analysis. The Bartlett and the Maximum

Likelihood functions are introduced for these simulations,

and it will later be seen that these two estimators are well

suited for conditions where the signal-to-noise ratio is

low.

2. Signal-to-Noise Ratio

The signal-to-noise ratio is a parameter which

depends on the relative powers of the signal and the noise

at the array. Following the procedure of Ziomek (1985), the

signal-to-noise ratio can be written in terms of the noise-

free signal and the spatial autocorrelation matrix of the

noise:

SNR = 20 Log 0 i (3.2)

i=l j=l '3
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The numerator of this expression may be interpreted

as the summation of all the elements of the signal spatial

correlation matrix. Similarly, the denominator represents

the sum of the entries of the noise correlation matrix.

The SNR was computed for several values of the noise

power, :2, and the correlation parameter, :, that generate

new values of KNij (Equation (3.1)). The results are

presented in Table 3.1. The expression above shows that the

SNR is reduced when the denominator of the argument
NR NP

increases, i.e., when the double summation KNij is
ill j=1

large due to a significant increase in the power of the

noise, 2, or a slow decay in the correlation between the

hydrophones, . By using the results presented in Figure

3.1 and the analytic expression of the noise matrix given in

Equation (3.1), the correlation of the noise will be

considered high when the factor - is less than 0.57 and low

when it exceeds 2.0.

TABLE 3.1

SIGNAL TO NOISE RATIO AS A FUNCTION OF -2 AND

0.57 1.0 1.7 2.0 2.2

10" 1 9  13 dB 16 dB 20 dB 21 dB 21 dB

5 10- 19 -1 dB 3 dB 6 dB 7 dB 7 dB

10- 18 -7 dB -3 dB 0 dB 1 dB 1 dB

5 10 - 1 8  -21 dB -17 dB -14 dB -13 dB -12 dB

10 - 17 -27 dB -23 dB -20 dB -19 dB -19 dB

10- 16  -47 dB -43 dB -39 dB -39 dB -38 dB

10- 1 8  -67 dB -63 dB -60 dB -59 dB -58 dB

28



In the following sections, the performance of

various estimators will be examined for several conditions,

including different cases of noise power and noise

correlation.

3. Bucker Detection Factor

A simulation using the Bucker detection factor was

run for the case of eddy localization under both noise-free

and noisy conditions.

a. Noise-free Conditions

The simulation was run by setting the power of

the noise, 2, to zero. The autocorrelation matrix of the

noise is then just the null matrix and the total matrix

reduces to one of signal only, as indicated by Equations

(3.1) and (2.29). A three dimensional plot and a contour

plot of the detection factor are shown in Figure 3.18. The

estimator is represented by a surface which has only a

single maximum positioned at the correct location of the

eddy. This suggests that the Bucker method is able to

determine the true location of the eddy in a noise-free

environment.

An interesting feature of the plot is the

symmetry that exists around both diagonals of the contour.

Moving on the principal diagonal, along the line:

Y = X + 20 (3.3)
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is equivalent to displacing an eddy with a constant diameter

of 20 km. The small intervals between the contour lines

along this path indicate that the location of the eddy can

be determined with reasonable accuracy, once we know its

diameter.

b. Case of Uncorrelated Noise

Uncorrelated noise is generated by choosing a

large value of £. In this case, the correlation falls off

rapidly on either side of the noise matrix diagonal. For a

large enough :, the noise field at one hydrophone is

completely dissimilar to that at another hydrophone and the

noise matrix becomes diagonal. Simulations were run with

= 0 and different values of -2. All yielded the same

results as in Figure 3.19, which is seen to be identical to

Figure 3.18. This similarity may be explained by recalling

the definition of the Bucker detection factor when noise is

present:

.,R , MNR
j KT KR

BUCK j=1i k=1 3j jk. jk (2.4)
NR NR NR NR(.KR-k KR KTk KT /

j=l Y=l~j j=l k=lj3k

where the total correlation matrix is given by

KTjk = KSjk + KNjk (2.29)
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or,

KTjk = KSjk + 72 exp(-;Ij-k) (3.4)

As can be seen, this expression only uses the

cross terms of the matrix. When is large enough, the

second term in the right hand side of Equation (2.29) is

almost negligible for every value of the noise power, -2.

thus the cross terms of the total matrix KT reduce to the

cross terms of the correlation matrix of the signal KS.

KTjk - KSjk , j k (3.5)

By changing the value of -2, the power of the

noise is modified, but the new diagonal terms do not play a

role in the calculations. The Bucker detection factor is

thus insensitive to perfectly uncorrelated noise; in this

case, the performance is exactly identical to the one in

noise-free conditions.

c. Case of Uncorrelated Noise

Any combination of noise power, c 2, and noise

correlation, ., yields a different pattern of the detection

factor. In cases for which the spatial correlation of the

noise is high, the Bucker method may still be able to

maximize the detection factor at the correct location, but

the absolute value of the peak will decrease as the

31



ambiguity surface becomes flatter. Figure 3.20 illustrates

this type of behavior.

Whenever both " and z2 generate a low signal-to-

noise ratio (large power, c2, or small correlation

parameter, ), the procedure fails and the localization of

the eddy becomes impossible (see Figure 3.21). We will

quantify the effects of :2 and , on localization below.

4. Bartlett Estimator

The same simulations as above were run using the

Bartlett estimator under noise-free and noisy conditions.

a. Noise-free Medium

In a generic noise-free environment, the

performance of the Bartlett estimator is similar to the

Bucker detection factor, as shown in Figure 3.22. As

expected, the same symmetry along the diagonals is still

present.

b. Correlated Noise

The performance of the Bartlett estimator

changes significantly as :2 and I vary. Figure 3.23

provides an example of the plot for _2 = i0-il and 3 = 1.7,

where the true location is found. Figures 3.24 and 3.25

illustrate failures of the method due to a weak signal-to-

noise ratio brought about by strong noise and highly

correlated noise, respectively. It will later be

established that the usual characteristics of the noise in a

deep ocean do not generally lead to this kind of ambiguity.
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5. Maximum Likelihood Method

The MLM estimator was calculated using the same

noise conditions as for the Bartlett function. An

examination of noise-free conditions is not possible because

of the singularity of the correlation matrix. Equation

(2.31) shows that the expression of the Maximum Likelihood

estimator requires the calculation of the inverse matrix

KT-1

MLM = (W- KT -1 W) -1  (2.31)

When noise is absent, the matrix KT reduces to the

correlation matrix of the signal KS which is generally

singular.

a. Slightly Correlated Noise

When -2 = 10-16 and : = 1.7, the method gives

better results than the Bartlett estimator with relatively

low side lobes (compare Figure 3.26 with Figure 3.23).

b. Strongly Correlated Noise

With a more highly correlated ambient noise

= 0.17), as depicted in Figure 3.27, it is still possible

to obtain a correct location of the eddy. By comparing this

plot with Figure 3.25, we note that the Bartlett estimator

was unsuccessful in this case. Nevertheless, even for the

MLM technique, a very low signal-to-noise ratio will result

in a failure as shown in Figure 3.28.
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IV. ANALYSIS OF THE SIMULATION

From the previous simulations, one sees that the

performance of each of the estimators varies significantly

under varying signal-to-noise ratios or source/receiver

geometries or sound speed variations. For example, the

center of gravity method was shown to be the best in

locating the SOFAR axis and determining the surface sound

speed. In contrast, this procedure was the least successful

in the acoustic front localization problem. Therefore the

efficiency of an estimator does not depend only on the type

of ambient noise but also on the particular problem being

solved. In order to continue focusing on a realistic

problem, the eddy localization problem will be studied in

greater detail. The condition of mismatching will be

treated separately.

A. COMPARATIVE STUDY OF THE ESTIMATORS

1. Criterion

To facilitate comparison of the performance of the

different methods, we will calculate the joint central

moments of the different estimators. The joint central

moment provides information on the spread of the detection

factor about the mean. The smaller the moment, the better

the estimate of the parameter of the ocean.
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Using the definition of the central moment of a

multiple random variable as defined by Peebles (1987):

nk = (x-x)n (y-y)k fxy(xY) dx dy (4.1)

where:

X, Y = means of the random variables X and Y,

fxy = joint probability density function of X and Y,

n, k = orders of the central moment.

The spreading factor for the MLM method is defined

as the second order central moment of the function MLM(x,y):

S = MLM(x,y) (x-40)2 (y-60)2 dx dy (4.2)

where x and y are the boundaries of the eddy we are looking

for.

Since we are dealing with a discrete search among

paramfeter values, this pseudo variance has the form:

"-RNN
S = _ _ MLMij (44+i-40)2 (54+j-60)2  (4.3)

i=l j=l

where NF denotes the number of possible values of i and j.

Equation (4.3) indicates how the estimator spreads

around the true frontal boundary values x = 40 and y = 60.

It is a global measure of the estimator performance, not
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just a measure of 'he main lobe width. A large value is

associated with significant spreading which indicates a poor

performance, even if the true position is actually found.

The value of the spreading factor will be also large when

the ambiguity surface has a large mean value and a small

amplitude (case of significant noise). Analogous spreading

factors may be defined for the Bucker and the Bartlett

functions.

2. Efficiency of the Estimators

The spreading factor defined above has been computed

for the different combinations of -2 and - shown in Table

3.1. The results are presented in Table 4.1 for the Bucker,

Bartlett and MLM methods. From this table it is possible to

compare the efficiency of each technique in a variety of

environments. The values of the correlation factor - have

been chosen to stay consistent with deep water measures.

The range of noise powers, -2 produced signal-to-noise

ratios between -67 dB and +21 dB.

In order to be consistent in comparing the spreading

factor S of the three schemes, it is convenient to modify

the expression for the Bucker detection factor as defined by

Equation (2.4) by dividing it by its largest value among all

the replicas. The maximum of this new function will always

be one in all situations of noise, as the Bartlett and the

MLM estimators.
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TABLE 4.1

SPREADING FACTOR S OF THE BUCKER (NORMALIZED), BARTLETT
AND MLM ESTIMATORS AS A FUNCTION OF 72 AND

2 0.57 1.00 1.70 2.00 2.20

SNR=+I3dB SNR=+I6dB SNR=+20dB SNR=+2ldB SNR=+2ldB
10-19 19,000 18,973 18,950 18,944 18,941

25,924 25,902 25,884 25,880 25,877
114 139 142 140 139

SNR=-ldB SNR=+3dB SNR=+6dB SNR=+7dB SNR=+7dB

5-10-19 19,280 19,147 19,031 19,004 19,090

26,471 26,364 26,272 26,250 26,239
567 654 708 698 691

SNR=-7dB SNR=-3dB SNR=OdB SNR=+ldB SNR=+ldB
10-18 19,632 19,364 19,133 19,078 19,050

27,149 26,935 26,754 26,710 26,688
1,131 1,382 1,411 1,391 1,377

SNR=-2ldB SNR=-I7dB SNR=-I4dB SNR=-13DB SNR=-I2dB

5"10-18 22,400 21,081 19,946 19,671 19,532

32,328 31,320 30,463 30,258 30,153
5,499 6,657 6,766 6,670 6,603

SNR=-27dB SNR=-23dB SNR=-20dB SNR=-I9dB SNR=-l9dB
10- 17 25,773 23,188 20,950 20,407 20,131

38,256 36,371 34,771 34,386 34,190
10,630 12,732 12,883 12,687 12,570

SNR=-47dB SNR=-43dB SNR=-39dB SNR=-39dB SNR=-38dB
10-16 54,747 37,381 32,723 30,280

1 85,126 78,315 76,655 75,805
66,998 72,147 70,060 69,050 68,404

SNR=-67dB SNR=-63dB SNR=-60dB SNR=-59dB SNR=-58dB
10-15 1

124,781

124,584

Note 1: The signal-to-noise ratio is indicated for each
entry of the table, followed by a triplet of numbers which
represent, respectively, the Bucker (normalized), Bartlett
and MLM spreading factors.

Note 2: The value , means that the estimator is unable to
detect the true location of the eddy.
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Table 4.1 provides a good illustration of the

performance of the estimators under several conditions of

noise power and correlation. Figures 4.1, 4.2 and 4.3 show

logarithmic plots of the spreading factor S versus the noise

power -,2; each curve represents a value of the correlation

parameter 3. It is thus possible to determine the value of

S for any pair of o2 and 3. As is obvious from Table 4.1,

the comparative performance of each method is mostly a

function of the signal-to-noise ratio of the measure.

For SNR less than -50 dB all methods fail to detect

the true location of the eddy. Nevertheless, we observe the

case -2 = 10-15 and : = 2.2, where the Bartlett and MLM

estimators indicate two different maxima at one. Even in

this case, the amplitude of the functions is so small that

the spreading factor S is very large.

When the SNR is about -40 dB, the Bucker method is

the most efficient estimator, albeit a weak one, as the

spreading remains significant. The superiority of the

scheme increases moreover when the correlation of the noise

decreases.

For other SNR and correlation values, the MLM method

is generally the most efficient. When the SNR = 0 dB or

greater, the advantage of the MLM scheme is obvious with

respect to the other two functions. One also notes that the

MLM estimator is well adapted to resolving highly correlated

noise situations; in such cases, simulations show that the
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width of the main lobe becomes narrower but that the mean

component of the surface increases.

B. MISMATCHING CASE

Mismatching occurs when a parameter used in simulation

of the replica fields has been incorrectly estimated and is

different from the one that created the true data. In the

eddy localization problem, this defect may be introduced in

several ways:

- a wrong measure of the source frequency,

- inaccurate estimation of the source or array position,

- inaccurate estimation of the source beamwidth,

- insufficient knowledge of the bottom loss
characterization,

- oversimplification of the SSP.

This list is not exhaustive and one must keep in mind

that perfect matching almost never exists due to the

impossibility of any acoustic model to solve the true

acoustic wave equation in the real ocean. Because

mismatching prevents a close likelihood between the actual

and replica fields. It can be thought of as an additional

noise which the correlation matrix has not taken into

account. Mismatching thus results in a degraded estimation

of the total spatial correlation matrix KT. The next

section studies in greater detail two cases where

mismatching is created by a change in the bottom loss

parameterization and where the borders of the eddy are
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smoother than what we have used previously to simulate the

real measured data.

1. Change in Bottom Loss Parameterization

All simulations were conducted with the assumption

that the bottom was fully absorbing. We will now consider

the bottom to be a perfectly rigid surface with total

reflection and examine how this new treatment modifies the

likelihood functions.

In the absence of noise the difference in phase at

each receiver of the array for both the perfectly reflecting

and fully absorbing bottom conditions is depicted in Figure

4.4. When the bottom is treated as a perfect reflector,

perfect matching will not occur because all the replica

fields are constructed based on the full absorption

assumption.

Figures 4.5 and 4.6 show the result of a simulation

using the MLM estimator with characteristics -2 = 10-17 and

z = 1.7 to represent the situations of no mismatching and

mismatching, respectively. When mismatching occurs, the

amplitude of the peak decreases due to an increase in the

mean value of the likelihood function. The secondary lobes

also become larger. It is important to note that the

degradation observed in Figure 4.6 does not imply that

treating the bottom as a perfect reflector is less correct;

it only means that the matching was done improperly; one
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must therefore be consistent in modeling the environmental

input variables.

2. Oversimplification of the Actual Eddy

The previously described eddy localization

simulations were run with an excessive simplification of the

true medium. The simulations assumed that there were no

horizontal gradients of sound speed in and outside the eddy

boundaries, i.e., the change of SSP occurred almost

instantly at the borders of the eddy. In an attempt to be

more realistic, the next simulation was conducted after

adding four intermediate SSPs between the two previously

utilized profiles (Figure 4.7). The first intermediate SSP

was introduced 4 km before the border of the eddy and the

next ones added every kilometer thereafter. Actual signal

values were generated with this smoothed baroclinicity, and

replica fields were computed as before with the simplistic

three-profile model. Noise was omitted from this simulation

in order to better appreciate the effect of this

mismatching. Results for the Bucker method are presented in

Figure 4.8. Comparing this plot with Figure 3.18 we see

that the main peak decreases but localization of the eddy

remains possible. The implication of this simulation is

that identification (location) of strong frontal boundaries,

such as the north wall of the Gulf Stream or ice edge

fronts, could be fairly exact but weaker, open ocean

mesoscale eddies may pose more of a difficult problem
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(assuming the same number of profiles are used to estimate

the replica fields).

The above examples suggest that in cases where the

signal-to-noise ratio is quite low, it is possible for

mismatching to hide the true location of the maximum and so

possibly lead to a failure of the procedure. As often as

possible, mismatching must be avoided by a comprehensive

knowledge of the parameters used in the replica fields

calculations.

C. COMMENTS ON THE PROCEDURE

As we were only interested in using matched field

processing in acoustic tomography, many simplifications have

been made to run the simulations. Although the procedure

seems to be applicable and efficient in most cases, it is

necessary to test its applicability to more complex

problems.

1. Environment

It was assumed in all the simulations that only one

or two parameters were unknown, for example, the surface

sound speed or the eddy location. For actual oceanic

situations, many more properties can be expected to vary in

space and time. Extending this study to a heterogeneous

medium is theoretically feasible but vastly increases the

number of unknowns.

Modeling a shallow water environment has not been

considered as a possible mechanism to speed up the
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calculations even though matched field processing remains

possible in this kind of environment. Several limitations

are apparent. A better knowledge of the bottom structure is

required. The ambient noise is moreover quite complex in

coastal waters and its spatial correlation matrix would be

difficult to model. As bottom interaction is important for

estimator calculations (see the mismatching case), it is

possible to coi.sider the bottom loss as an unknown parameter

and attempt to determine it through matched field

processing. To examine this special case, the replica

fields are generated using nine different bottom loss curves

and one attempts to find the actual bottom loss curve.

Figure 4.9 illustrates the different bottom loss curves that

have been used to create the replica fields in shallow water

(300 m). The maximum of the likelihood estimator occurs

when the replica bottom corresponds to the actual loss.

However, since the various curves are so similar in shape

and because the bottom loss has only a weak to moderate

effect on the transmission loss, the correct bottom loss

curve is not sharply defined. This implies that a correct

specification of bottom loss for a low loss bottom is not

required; not so for a high loss bottom.

2. Model Consideration

a. Resolution

In the typical target location problem, the

medium parameters are generally considered constant. It is
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only necessary to run the PE model once to compute the

pressure field at different distances. However, when the

SSP becomes the unknown in the tomography problem, the PE

model must be run for each replica. If we wish to find the

correct shape of the SSP from 0 to 300 m in the seasonal

thermocline with a resolution of 1 m, the model needs to be

run 10300 times if the sound speed at each depth can have

ten different values. This simple example illustrates the

trade-off between resoluti , and computer time. In the

problem of eddy localization, where the limits of the

perturbation were allowed to vary over 11 values, the PE

model was run 121 times. For a determination of more than

two unknowns, the basic theory of the estimators is still

valid but the representation cf the ambiguity surfaces

becomes unachievable due to limitations in computer run

time.

b. Noise Approximation

The correlation matrix o4 the ambient noise was

modeled by a symmetric matrix decaying exponentially around

the diagonal. This approximation is rather poor. even in

deep water, because the power of the noise is assumed to be

the same at each hydrophone. A better simulation would have

been to consider the matrix of a noise which is, like the

signal, a so' tion of the wave equation. Our matrix is

symmetric even though the actual matrix of the complex noise

72



needs to be hermitian, because the cross-correlations are

complex.

3. Correlation Matrix

If the spatial correlation matrix of the noise were

known, it could be introduced in the replica fields and we

could deal with it as with a noise-free problem.

In practice, it is not possible to separately

compute the noise and the signal correlation matrices. The

total matrix needs to be estimated from the noisy signal at

the hydrophones. Several techniques are available, as for

example the Fourier method recommended by Johnson (1982).

As the matrix becomes only an estimate; we should expect a

slight mismatching and then decreasing efficiency of the

estimators.
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V. CONCLUSION

Matched field processing has been shown to be an

efficient way to solve the inverse problem in ocean acoustic

tomography when the ocean can be characterized by a few

parameters. The estimators which have been used (Bucker,

Bartlett, Maximum Likelihood, etc.) were generally robust

enough to find the actual sound speed field of the ocean

under usual conditions of noise power and noise correlation.

A. SLU11MARY OF THE RESULTS

For noise-free conditions or high signal-to-noise ratios

(SNR), all the estimators are able to correctly determine

the actual unknown parameter of the medium. The Bucker

detection factor was shown to be the best function when the

SNR was moderate.

The efficiency of the various estimators, illustrated by

their spreading about the true value, decreased in cases of

low SNR introduced by a large power or a high spatin'

correlation of the noise. The Maximum Likelihood method was

shown to be the best scheme when the ambient noise was

highly correlated because its spreading was less sensitive

to the degree of spatial correlation than the other

estimators.

The effect of mismatching, when introduced in the

simulatiorns, generated a decrease in the efficiency of the
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methods. Analysis of several degrees of mismatching

indicated that unambiguous results can be expected from

matched field processing provided that the parameterization

of the medium is exact enough to generate consistent replica

pressure fields.

B. WEAKNESS OF THE SIMULATION

In order to deal with reasonable computer times, only

the cases of one or two unknown parameters were studied.

For the same reason, the actual acoustic pressure field was

compared with only a few replica fields. This limitation

leads to moderate resolution in the results which could

easily be improved by the generation of more replica fields.

The weakness in modeling the noise field has already

been emphasized in Chapter III.A. Further simulations

should be done with a noise correlation matrix, KN, that has

actually been obtained from measurements at sea. Further

work using a more realistic parameterization of the ocean

should be done, e.g., with empirical orthogonal functions

(EOF) and using the technique to estimate EOF coefficients.
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APPEN4DIX

FORTRAN 77 PROGRAM USED IN THE SIMULATION

rROGRAM FSTIMA
C ACOUSTIC TOMOGRAPHY U1-;NG MATCHED FIELD PROCESSING
C
C THIS PROGRAM DRAWS THIREE KINVS OF DETECTION FACTOR IN 3D
C IT COMPARES BUCKER, PARTLY AND fi1131 ?IE-TIIT)s
C
C '11, E OTl S F IS I NUBOHO))J, BY ITUS CO B F TA I ON HIAIRTIX
c
C THE NOISE MATRIX IS PROPVORTIONAL TO Il)ENFITY MATRIX IN CASE OF
c UNCORRELMAET) Nfl] SF BUP IS IN (EUNERA]. HEI TUIAN flAIR TX
c
c TrHE F.XACT(OR IlEASfRE1)) PHIASES AMIAGNIT1"DS ARE BEAT) INTH

C FILE EXACT DATA
C '11HE CfliTIJTET) PANAMETEPS ABE BEAD ON '1111. Fl1 TE NEAR D)ATA
C

GIfr F. MDEI, ALLOWS A MAXIT Hl OF 20 B E-'CU.IVyE RS DUE 10 IJII USE OF THU.
C PARABOLIC EQUAT ION FROM THE FAR(, P('ACA

C
C VS IS THlE COMPLE-*X MATRIX OF MEASURED PABAIIEIERS
C A IS THEF MATRIX OF GUFSSEI) PAPAIIE]FRS WE WANT TO1 HATCH
CI NR IS THE NUMBIER OF RECEIVERS (MAX] MM 20)
c NF I 1.9 1E COMMON NUMBER OF POSSIBLE- VA TUL-S FOR 2 UNvtNWNS
C IHE NUMB ER OF F IF 1.1) WE MAUTCH I IS ACTUALLYT NF*NF
C

PEAL FPHASE(20) PHMGM20) X(tl) ,Y( 1) U(11,I1) V1CONT(11,11)
REAL DART (11,11, FMLM(II) I i) ,IICONU(1 I] 11) BOUQNT(i I, 11)
COMIPIEX A(20 ,20) Kq(20.20) (I)F( I I, 11) ,T( 0 , 2()
UY1ITEX W(2()) C5Ut , *ET F
REAL KN(20,2() ,NQPff

C 99 DEFINES Ill'F FITE OF 1IEASI'REI(F.XACT) DAA
C 98 DEFTNES T1Il FILE (.F DATA WE WANT 10 MMICII

lR=20
NF=1 I

C READ THlE MEASURED VALUES IN FlI.E EXACT D)ATA
Do I 1=1 NR

REAT) (94,600) PMAGNI(T),PPIIASE(I)
I CONT INUE
600 FORMAT( EII.4,2X,F7.'.)
C
c
c cotipuTE VIE ELEMENTS OF MATRIX VS
999 DO 2 J=1 NR

D)O 3 =lNR
KS( J K =F1Arfl,(J) PIIAG;NI (K)',EXP(C!11PI.X(O. PIASE(I) -

PH AWEK)
3 CONT INUE
2 CONTA NUE
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C DEFINE 1-11 CORRELATION HAT IX KN OF THlE CORRET,ATED NOISE
F R INP VALUE OF SIGIIA2 ?
REA D* JGJA 2
FRINTP VALUE OF BETA V'
READ*,AETA
DO 4 J=1 NR

Do05 1=1INR
KN(I J =SIGMIA2,*EXP(-BETIA'cABS(I-J))

5 CON! INUH
4 CONTINUE

C
C COMPUTE THE TOTAL COVARIANCE MATRIX INCLUDING THE NOISE
C BY ADDING THlE NOISE AND THE SIGNAL CORREINF"IION MATRICES

D)0 6 , =1 NR
DO 7 f=I,NR

KT(I ,J) KS(I ,J)4Kl (T,,T)
7 C61 [I NUE
6 CONTINUIE
C
C
c 13E(;INNINCG OF MA IN 1l001 FOR 111l N F RUNS

DO 101 INDEX=1,NF
DO 100 JNDEX=1 NF

C READ PARAHETER OF EXPEC"TID FIFED-1 EN FETE. NEAR DATA
DO 8 1-1 OR
READ(OR 6?J0) PflA(iACT(T),PPI!A.--(1I)

G :' Pl F I MENlS OF flAIR A
1)o 9 J=1 NR

Do 10 =!NR
A(J K)=('MAGNl (,I)-'P1AGNI (K)" EXP (CHPIX (0. ,PPHIA.;E (3) -

1in CeOti flUiIE
9 CO-NTIlNUE

C DUCKER DETECTION FACTOR C

DO 11 J='l NR
1)0 12 1 i,1NR

I F (K NE~r ..3CO(IOEXJEX)-)FI DXNEX
A(J K);tCO J(;(K-F(J,K)

12 COOHlNOE
11 CONT I NbE
C
C C1)F (-)IS ACTUALLY REAL DUlE TO ]PROPERTY OF MATRICES
C A AND Ti ENCE WE KEEP ONLY TH[E REAL. PART OF IT

C Dr(IND)EX,JNDEX)=REAL(CDF(INDEX,JNDEX))
C NORHALIZE THE 1)F FACTOR

FACTOR=().
FAGT=0.
DO0 13 J= UNR

DO 14 T(=I,NR T~AJK*;NI(( )IF(K NE.J)FACTOQR=FACTO~(?)rOj(( )
IF (. NE.J)FACrf=FAcTr4KT'(J,K)tCONJG(KrI(,J,KS)

14 CONTI NLUE
13 CONTINUEr
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FACTOR=SqRT (FACTFOR)
FAcTr=SQR I (FACT)
)F (I N DLX,:JfDEX DF( INDEX, JND)EX) FACfI/FACIO(R

100 CONTFINUE
101 CONTINUE
C
C NORMALIZE BY THlE LARcGEST VALUE

I3IAX=0.
1)0 67 I11NF

DO 68 J~1 NF
IF(I)F(f,J).GE.B!IAX) flrAXr-F(I,J)

68 CONTIN~UE
67 CONTI NUE
c

DO0 69 I=1,NF
DO0 70 J~1 NF

70 ~ ~ F~ CJTM -J>F( I ,.T)/PfIAX
60 CDn 'l I MI'

C DISSPLAY 111E HM!BIX oF mOVAI21 IEF> O FA(1I()I
P'R I N ', , B UCK F'R TAC IOfR MA IRI X
1) Q15 1=l,NF

WRIliE(6 77(F ,).- N
7 77 FORMl (ii (2~ F4.2))

C BARIlEIfFESI'IMAiOR C
r ( C( :C c ('r ( r c( c I: cIM

PF.WIMI 98

C PECIMNIN'lW OF M'AI TM n lo np O IF jF RiMS,
D9 20 1 iMIJEX= I NF
DO0 20 OfANT)EX= I N F

C READ PARAMETERS OF PLICArIT)
IPO 50 1=1 NR

RCAI)(9A 600) PICI() IIS(I
5n CONIl EF

c I)ETERNITNE THlE NORIIALIZ7ET) C:Ot fiI,EX VE~CTOR W

NOPM-NoRtl I PHAWI 1( 1)' 2
1 6 CONM F I UE

NORMirSOR r (NOR!])

DO 17 1=1 NR
17( ON1I ?) ./NORII) PAGN I (1 ~ EX P(CMtPLX (0. , PPIIASE(1))I

C COMPUTE 1-11PRTIEi FACTOR
CSUII=(O.
Do 18

DO 19 J=1 NR

19 CON V IMUE

B3ART( IUXNE)RA~C~I
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C
200 CONTI NUE
201 CONTI NUF
C

C NORALIZTIONBY THlE HIGHEST VALUE
13ARHAX=o.
DO 20 1=1 NF

DO 21 =~1 NF
IF(IhART(I,J).GE.BARMAX) 1ARIAX=13ARTI(J,J)

21 CONTI NUE
20 CONTINUE
C

DO 22 1=1 NF
DO 23 =1NF

23AR CO NI~ 1J)=BAR'I'( ,J)/BARIIAX
22 CONTI NUE
C
C VISSPLAY THE MATRIX OF NUPJ AIZFI)PlETO FAC,'InR

FR I N, BARTHTFr FACTORS HAIRPTX'
1DO 24 I=1.NF

WRIE(6,777)(I)AT(T,TI),,J=l,NFr)
24 MINIF I NilE
C

C fILM ESTIMifrOR C
Cc: r:C. : C C,( C C C,

REWIND 98
C
C; INVFPT THlE (,ORRELATIU1(N IIAIRI X 1KT

C CAl.l. (C ['RIN(NR ,1,NR , l)r'IE-Rhi)

C DEC INNING OF HM LOOP FOR IlE NF PUNS
DO0 301 JNDEX=INF
D) 300 JNlEX~l ,NF

C
C PEAD PARAMETERS OF REPLICA FIELD

DO 51 1=1 NR
READ(9A,6OO) PIAGN(I),FPIIASE,(I)

5 1 CMlN"IJE~
C
C D)ETERMINE THlE N(OrIAI. coMflEX VFECTIOR W

26 coNTINUE

C WURH=SORT (NORM)
DO 27 1=1 NR

27j =(N I . /NOM )PMA;N TI EX F(CIIPX (Q. ,PHIASE(1I)
C
C COMPUTE THE MIAN FACTOR

CSUtI=(0.* 0.
DO 28 I=1N

DO 29 3=1 NR
CS(Jt1=CiH4 CON,1CG (W ( I) )rV;( I, J) W (J)

29 CONTINUE
28 CONTINUE

c FfMLf(INDEX,JNDEX)=REAL(1I ./CSUH)
300 CONT INU E

I0 CONI'INOIF,
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C
C NORMALIZATION BY THlE HI (1IF.SI VALUE

FrILMAX=O.
1)0 30 1=1 NF

DO 31 3TIN

31 CONTINUE
30 CONTINUE
C

DO 32 1=1 NF
DO 33 051,NF

33 CONTINUE
32 CONTINUE
C
C UISSPLAy THlE MATRIX OF NORMALIZED D)ETECTION FACTOR

PR INT*, MLII FACTORS MATR IX'
DO 34 I=1,NF

WRITE(6 ,777) (F!IH(fI,J) ,J=l ,NF)
34 CONT INUE

CCCCCCCUCCCCC:CCCCCCCcccuCCCuCCccc:ccucccuCCCC;ccuCCC
WDF=0.
WPART"O.
WFlLI-n.
DO0 65n I=-l,NF

D)O 651 J= ,NF
WDF WDI)FI J) "(44 . -40. )''2"i54J-60 ) fA2
WBAJI-14F111A TQI~(I , (II44. 41-401.)Q,,,v(4JQ)A -0.

651 CUANVINUE
6;0 (flNTINUE
C

FPIN['*. WIJF= WB*lj T
* PP IN rx, WFMAW , .WPA~Ti

C
FN

89



LIST OF REFERENCES

Baggeroer, A.B., Kuperman, W.A., and Schmidt, H.,
"Matchfield Processing: Source Localization in
Correlated Noise as an Optimum Parameter Estimation
Problem," The Journal of the Acoustical Society of
America, Vol. 83, pp. 571-587, February 1988.

Bucker, H.P., "Use of Calculated Sound Fields and Matched-
Field Detection to Locate Sound Sources in Shallow
Water," The Journal of the Acoustical Society of
America, Vol. 59, pp. 368-373, February 1976.

Coppens, A.B., An Introduction to the Parabolic Equation for
Acoustic Propagation, Naval Postgraduate School Report
61-83-002, November 1982.

Cox, H., "Spatial Correlation in Arbitrary Noise Fields with
Application to Ambient Sea Noise," The Journal of the
Acoustical Society of America, Vol. 54, pp. 1289-1301,
April 1973.

Heitmeyer, R.M., Fizell, R.G., and Moseley, W.B., Full Field
Ambiguity Function Processing in a Complex Shallow-Water
Environment, Naval Research Laboratory Report 8868, 31
December 1984.

Howe, B.M., Ocean Acoustic Tomography: Mesoscale Velocity,
Ph.D. Dissertation, Scripps Institution of Oceanography,
San Diego, California, 1986.

Johnson, D.H., "The Application of Spectral Estimation
Method.s to Bearing Estimation Problems," IEEE (JOE),
Vol. 70, pp. 1018-1028, 1982.

Kay, S.M., Modern Spectral Estimation. Theory and
Application, Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

Munk, W., and Wunsch, C., "Ocean Acoustic Tomography: A
Scheme for Large Scale Monitoring," Deep-Sea Research,
Vol. 26A, pp. 123-161, July 1978.

Peebles, P.Z., Probability, Random Variable, and Random
Signal Principles, p. 120, McGraw-Hill Book Co., San
Francisco, California, 1987.

90



Porter, M.B., Dicus, R.L., and Fizell, R.G., "Simulation of
Matched Field Processing in a Deep Water Pacific
Environment," IEEE (JOE), Vol. 01, pp. 173-181, January
1987.

Schmidt, R.O., A Signal Subspace Approach to Multiple
Emitter Location and Spectral Estimation, Ph.D.
Dissertation, Stanford University, November 1981.

Urick, R.J., Ambient Noise in the Sea, pp. 6-11, Peninsula
Publishing, Co., Los Altos, California, 1984.

Ziomek, J.L., Underwater Acoustics--A Linear Theory
Approach, pp. 122-123, Academic Press, Inc., Orlando,
Florida, 1985.

91



BIBLIOGRAPHY

Romm, J.J., Application of Normal Mode Analysis to Ocean
Acoustic Tomography, Ph.D. Dissertation, Massachusetts
Institute of Technology, Cambridge, Massachusetts, March
1987.

Tappert, F.D., Wave Propagation and Underwater Acoustics,
Springer-Verlag, Berlin, 1977.

Tolstoy, I., and Clay, C.S., Ocean Acoustics: Theory and
Experiment in Underwater Sound, American Institute of
Physics, Inc., New York, 1987.

Van Trees, L., Detection, Estimation, and Modulation Theory,
John Wiley & Sons, Inc., New York, 1968.

92



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code 68 1
Department of Oceanography
Naval Postgraduate School
Monterey, California 93943-5000

4. Chairman, Code 62
Department of Electrical and Computer
Engineering

Naval Postgraduate School
Monterey, California 93943-5000

5. Professor R.H. Bourke, Code 68Bf 2
Department of Oceanography
Naval Postgraduate School
Monterey, California 93943-5000

6. Professor J.H. Miller, Code 62Mr 7
Department of Electrical and Computer
Engineering

Naval Postgraduate School
Monterey, California 93943-5000

7. Professor G. Cantin, Code 69Ci
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93943-5000

8. Commander
Naval Oceanography Command
NSTL Station
Bay St. Louis, Mississippi 39522

9. Commanding officer
Naval Oceanographic Office
NSTL Station
Bay St. Louis, Mississippi 39522

93



10. Commanding Officer 1
Fleet Numerical Oceanography Center
Monterey, California 93943

11. Commanding Officer 1
Naval Ocean Research and Development
Activity

NSTL Station
Bay St. Louis, Mississippi 39522

12. Office of Naval Research, Code 420 1
Naval Ocean Research and Development

Activity
800 North Quincy Street
Arlington, Virginia 22217

13. Dr. A.B. Baggeroer 1
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

14. Dr. H.P. Bucker 1
Code 503, Naval Undersea Center
San Diego, California 92132

15. Monsieur l'Amiral 2
Chef d'Etat-Major de la Marine
2, rue Royale
75200 Paris Naval, France

16. Monsieur le Vice Amiral d'Escadre 2
Commandant la Force Oc6anique Strat6gique
75200 Paris Naval, France

17. Monsieur le Contre-Amiral 2
Attache Naval pres l'Ambassade de France
4104, Reservoir road NW
Washington, D.C. 20007

18. Monsieur le Capitaine de Vaisseau 2
ommandant le CEPMAN

B.P. 38, 83800 Toulon Naval, France

19. Monsieur, l'Ingenieur en Chef de l'Armement 2
Directeur de I'EPSHOM
B.P. 426, 29275 Brest Cedex, France

20. Capitaine de Corvette F. Strohm 5
ESMED
83800 Toulon Naval, France

94



21. Meteorologie Nationale
SMM Documentation
2, avenue Rapp
75007 Paris, France

22. Professeur J.C. Gascard
Laboratoire d'Oc~anographie Dynamique

et Climatologique
Universite Paris 6
4, place Jussieu
75252 Paris Cedex 05, France

23. Professeur B. Hamonic
Institut Superieur
d'Electronique du Nord
D6partement Electronique
41, Boulevard Vauban
59046 Lille Cedex, France

95


